《万物简史》第31章


慕峁梗热缦衤D茄蚪鸩⑸洇亮W印S惺焙颍饫嗍笛榈慕峁橇钊朔呀獾模且膊蛔阄帧S懈龃嬖诤芫玫哪烟飧獾牟ǔさ墓馄锥潦泄亍K遣男巫聪允荆庠釉谟械牟ǔな头拍芰浚谟械牟ǔげ皇头拍芰俊U庥倘缫桓鍪艿郊嗍拥娜耍欢铣鱿衷谔囟ǖ牡氐悖涝兑部床坏剿窃趺磁芄磁芄サ摹K菜挡磺迨鞘裁丛颉! 【褪窃谒妓髡飧鑫侍獾氖焙颍6蝗幌氲揭桓龃鸢福杆傩闯隽怂闹畚摹B畚牡奶饽课堵墼雍头肿拥墓乖臁罚衔缱又荒芰粼谀承┟魅方缍ǖ墓斓郎希换嶙谷朐雍恕8菡庵中碌睦砺郏诹礁龉斓乐湓诵械牡缱踊嵩谝桓龉斓老В⒓丛诹硪还斓莱鱿郑植煌ü屑涞目占洹U庵旨狻粗摹孔釉厩āā比皇羌淦嫣氐模质翟谔簦荒懿恍拧K坏得髁说缱硬换嵩帜研缘嘏绦欧山雍耍医馐土饲獾牧钊朔呀獾牟ǔぁ5缱又怀鱿衷谀承┕斓溃蛭侵淮嬖谟谀承┕斓馈U馐歉隽瞬黄鸬募猓6虼嘶竦昧?922年……即爱因斯坦获得该奖的第二年……的诺贝尔物理学奖。 与此同时,不知疲倦的卢瑟福这时候已经返回剑桥大学,接替汤姆逊担任卡文迪许实验室主任。他设计出了一种模型,说明原子核不会爆炸的原因。他认为,质子的正电荷一定已被某种起中和作用的粒子抵消,他把这种粒子叫做中子。这个想法简单而动人,但不容易证明。卢瑟福的同事詹姆斯·查德威克忙碌了整整11个年头寻找中子,终于在1932年获得成功。1935年,他也获得了诺贝尔物理学奖。正如布尔斯及其同事在他们的物理学史中指出的,较晚发现中子或许是一件很好的事,因为发展原子弹必须掌握中子。(由于中子不带电荷,它们不会被原子中心的电场排斥,因此可以像小鱼雷那样被射进原子核,启动名叫裂变的破坏过程。)他们认为,要是在20世纪20年代就能分离中子,〃原子弹很可能先在欧洲研制出来,毫无疑问是被德国人〃。 实际上,欧洲人当时忙得不亦乐乎,试图搞清电子的古怪表现。他们面临的主要问题是,电子有时候表现得很像粒子,有时候很像波。这种令人难以置信的两重性几乎把物理学家逼上绝境。在此后的10年里,全欧洲的物理学家都在思索呀,乱涂呀,提出互相矛盾的假设呀。在法国,公爵世家出身的路易-维克多·德布罗意亲王发现如果把电子看做是波,那么电子行为的某些反常就消失了。这一发现引起了奥地利人埃尔文·薛定谔的注意。他巧妙地做了一些提炼,设计了一种容易理解的理论,名叫波动力学。几乎同时,德国物理学家维尔纳·海森伯提出了一种对立的理论,叫做矩阵力学。那种理论牵涉到复杂的数学,实际上几乎没有人搞得明白,包括海森伯本人在内(〃我连什么是矩阵都不知道。〃海森伯有一次绝望地对一位朋友说),但似乎确实解决了薛定谔的波动力学里一些无法解释的问题。 结果,物理学有了两种理论,它们基于互相冲突的前提,但得出同样的结果。这是个令人难以置信的局面。 1926年,海森伯终于想出个极好的妥协办法,提出了一种后来被称之为量子力学的新理论。该理论的核心是〃海森伯测不准原理〃。它认为,电子是一种粒子,不过是一种可以用波来描述的粒子。作为建立该理论基础的〃测不准原理〃认为,我们可以知道电子穿越空间所经过的路径,我们也可以知道电子在某个特定时刻的位置,但我们无法两者都知道。任何想要测定其中之一的努力,势必会干扰其中之二。这不是个需要更精密的仪器的简单问题;这是宇宙的一种不可改变的特性。 真正的意思是,你永远也无法预测电子在任何特定时刻的位置。你只能认为它有可能在那里。在某种意义上,正如丹尼斯·奥弗比所说,电子只有等到被观察到了,你才能说它确实存在。换句稍稍不同的话来说,在电子被观察到之前,你非得认为电子〃哪里都有,而又哪里都没有〃。 如果你觉得被这种说法弄得稀里糊涂,你要知道,它也把物理学家们弄得稀里糊涂,这是值得安慰的。奥弗比说:〃有一次,玻尔说,要是谁第一次听说量子理论时没有发火,这说明他没有理解意思。〃当有人问海森伯是不是可以想像一下原子的模样,他回答说:〃别这么干。〃
第九章 威力巨大的原子(5)
(。。)好看的txt电子书
因此,结果证明,原子不完全是大多数人创造的那个模样。电子并不像行星绕着太阳转动那样在绕着原子核飞速转动,而更像是一朵没有固定形状的云。原子的〃壳〃并不是某种坚硬而光滑的外皮,就像许多插图有时候怂恿我们去想像的那样,而只是这种绒毛状的电子云的最外层。实质上,云团本身只是个统计概率的地带,表示电子只是在极少的情况下才越过这个范围。因此,要是你弄得明白的话,原子更像是个毛茸茸的网球,而不大像个外缘坚硬的金属球。(其实,二者都不大像,换句话说,不大像你见过的任何东西。毕竟,我们在这里讨论的世界,跟我们身边的世界是非常不同的。) 古怪的事情似乎层出不穷。正如詹姆斯·特雷菲尔所说,科学家们首次碰到了〃宇宙里我们的大脑无法理解的一个区域〃。或者像费曼说的:〃小东西的表现,根本不像大东西的表现。〃随着深入钻研,物理学家们意识到,他们已经发现了一个世界:在那个世界里,电子可以从一个轨道跳到另一个轨道,而又不经过中间的任何空间;物质突然从无到有……〃不过,〃用麻省理工学院艾伦·莱特曼的话来说,〃又倏忽从有到无。〃 量子理论有许多令人难以置信的地方,其中最引人注目的是沃尔夫冈·泡利在1925年的〃不相容原理〃中提出的看法:某些成双结对的亚原子粒子,即使被分开很远的距离,一方马上会〃知道〃另一方的情况。粒子有个特性,叫做自旋,根据量子理论,你一确定一个粒子的自旋,那个姐妹粒子马上以相反的方向、相等的速率开始自旋,无论它在多远的地方。 用科学作家劳伦斯·约瑟夫的话来说,这就好比你有两个相同的台球,一个在美国俄亥俄州,一个在斐济,当你旋转其中一个的时候,另一个马上以相反的方向旋转,而且速度完全一样。令人惊叹的是,这个现象在1997年得到了证实,瑞士日内瓦大学的物理学家把两个光子朝相反方向发送到相隔11公里的位置,结果表明,只要干扰其中一个,另一个马上作出反应。 事情达到了这样的一种程度:有一次会议上,玻尔在谈到一种新的理论时说,问题不是它是否荒唐,而是它是否足够荒唐。为了说明量子世界那无法直觉的性质,薛定谔提出了一个著名的思想实验:假设把猫儿放进一只箱子,同时放进一个放射性物质的原子,连着一小瓶氢氰酸。要是粒子在一个小时内发生衰变,它就会启动一种机制,把瓶子击破,使猫儿中毒。要不然,猫儿便会活着。但是,我们无法知道会是哪种情况,因此从科学的角度来看无法作出抉择,只能同时认为猫儿百分之百地活着、百分之百地死了。正如斯蒂芬·霍金有点儿激动地(这可以理解)说,这意味着,你无法〃确切预知未来的事情,要是你连宇宙的现状都无法确切测定的话〃。 由于存在这么多古怪的特点,许多物理学家不喜欢量子理论,至少不喜欢这个理论的某些方面,尤其是爱因斯坦。这是很有讽刺意味的,因为正是他在1905年这个奇迹年中很有说服力地解释说,光子有时候可以表现得像粒子,有时候表现得像波……这是新物理学的核心见解。〃量子理论很值得重视。〃他彬彬有礼地认为,但心里并不喜欢,〃上帝不玩骰子。 〃他说。 爱因斯坦无法忍受这样的看法:上帝创造了一个宇宙,而里面的有些事情却永远无法知道。而且,关于超距作用的见解……即一个粒子可以在几万亿公里以外立即影响另一个粒子……完全违反了狭义相对论。什么也超不过光速,而物理学家们却在这里坚持认为,在亚原子的层面上,信息是可以以某种方法办到的。(顺便说一句,迄今谁也解释不清楚粒子是如何办到这件事的。据物理学家雅基尔·阿哈拉诺夫说,科学家们对待这个问题的办法是〃不予考虑〃。) 最大的问题是,量子物理学在一定程度上打乱了物理学,这种情况以前是不存在的。?
小说推荐
返回首页返回目录